14.1/14.2 Partial Derivatives

Goal: To find derivatives of multivariable functions.
Idea: Look at one variable at a time.
Entry Task: Consider

$$
f(x, y)=4 x y+y^{2}-3 x-5 y
$$

1. Plug in $y=1$, then find the derivative with respect to x.
2. Do it again with $y=2, \ldots$
3. And again with $y=3, \ldots$
4. Plug in $x=1$, then find the derivative with respect to y.
5. Do it again with $x=2, \ldots$

6 . And again with $x=3, \ldots$

Recall: Definition of derivative

1. Given a function $y=f(x)$.
2. Simplify the general formula for the slope of the secant from x to $x+h$

$$
\frac{f(x+h)-f(x)}{h}
$$

3. Let $h \rightarrow 0$, to get
$\frac{d y}{d x}=f^{\prime}(x)=$ slope of tangent

Partial Derivatives

For multivariable functions:

1. Given $z=f(x, y)$

2a. Simplify (y fixed, x variable)

$$
\frac{f(x+h, y)-f(x, y)}{h}
$$

3a. Let $h \rightarrow 0$, to get

$$
\left.\frac{\partial z}{\partial x}=f_{x}(x, y) \quad \text { (with respect to } \mathrm{x}\right)
$$

Example:

$$
f(x, y)=4 x y+y^{2}-3 x-5 y
$$

$$
\frac{f(x+h, y)-f(x, y)}{h}=
$$

2b. Simplify (x fixed, y variable)

$$
\frac{f(x, y+h)-f(x, y)}{h}
$$

3b. Let $h \rightarrow 0$, to get

$$
\frac{\partial z}{\partial y}=f_{y}(x, y) \quad(\text { with respect to } \mathrm{x})
$$

Example:

$$
\begin{aligned}
& f(x, y)=4 x y+y^{2}-3 x-5 y \\
& \frac{f(x, y+h)-f(x, y)}{h}=
\end{aligned}
$$

How to do partial derivatives:
Step 0: Rewrite powers and simplify like we always do.

Example: Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for

1. $z=10 x^{4}+7 x y^{3}+8 x^{2} y^{10}$

Step 1: Identify the desired variable! (Underline it if it helps) Treat all other variable like numbers!

Step 2: Identify the constants terms and the coefficients.
"Bring down coefficients"
Step 3: Use the regular one-variable derivative rules.

More examples: Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for

1. $z=x^{3}-y^{2}+3 x y^{4}$
2. $z=e^{x^{2}}-\ln (y)+7$
3. $z=\left(x^{2}+3 y\right)^{10}$
4. $z=x y^{2} e^{x}$

Interpreting as a rate
Your company produces and sells two products (hats and sunglasses)
$x=$ number of hats
$y=$ number of glasses
3. Estimate the values of

$$
\begin{aligned}
& \frac{P(5.001,8)-P(5,8)}{0.001} \approx \\
& \frac{P(5,8.01)-P(5,8)}{0.01} \approx
\end{aligned}
$$

You find that profit is given by

$$
P(x, y)=-3 x^{2}+30 x-5 y^{2}+130 y+2 x y-100
$$

1. Find the partial derivatives.
2. Find and interpret

$$
P_{x}(5,8) \text { and } P_{y}(5,8)
$$

Graphical Interpretation

Pretend you are skiing on the surface
$z=f(x, y)=15-x^{2}-y^{2}$

1. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$
2. Find and interpret $f_{x}(7,4)$ and $f_{y}(7,4)$

Aside: Graphical Interpretations

